

Fraunhofer ISIT: A strong player in Battery Technology and Power Electronics

160 staff (+ approx. 40 students)

Initial Investment: € 125 Mill.

- € 250 Mill. Industry
- € 42 Mill. Cleanroom II
- € 20 Mill. FMD

Annual Budget

€27 Mill.

Certified according to

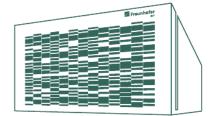
ISO 9001:2015

Spin-Offs

MICMAB

CAMPTON Diagnostics

MM Leclanché



Boards & Memberships

- Advisory board battery research @ BMBF
- Scientific advisory board BVES
- Competence network lithium-ion batteries KLiB
- Competence cluster battery use "BattNutzung"
- Network of research pilot lines LiPlanet

Battery Systems FAB-SH

Manufacturing technology

Cell development

Battery analytics and systems

Concentration and expansion strategy in new building - FAB-SH

2020 2021 2022 2023

Purchase building Fraunhoferstr. 2 ◆ Move in office Start Interior construction ◆

Doubling of project and revenue development leads to bottlenecks at ISIT

- Industry partners seek facility space for joint projects
- FAB-SH enables project collaboration labs and incubator infrastructure for:
 - Joint development cooperation
 - Scaling of manufacturing processes
 - Cell construction and cell testing
 - Battery system construction
- Other potential partners:
 - Plant manufacturer
 - Cell manufacturer
 - Technical testing organizations

Fraunhoferstraße 2

2024

2025

FAB-SH completely in operation

FAB-SH - Activities

Current Topics

- Development of battery production technologies
- Lithium battery prototyping
- Tests on battery cells, modules and systems
- Development and optimization of battery system concepts
- Hands-on Training

Examples of battery cells realized at Fraunhofer ISIT

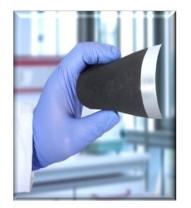
Technical Specifications	High Energy	🏂 High Power	flexible	Robust
Voltage	3,7 V	2,5 V	3,7 / 2,5 V	2,5 V / 3,3 V
Energy Density	> 260 Wh/kg	> 90 - 160 Wh/kg	> 200 Wh/kg	> 75 - 210 Wh/kg
C-rate*	2C	18C / 60C	2C	8C
Cycle stability	> 1000 Cycles	> 2000 Cycles	> 2000 Cycles	> 15000 Cycles
Durability	8-10 years	Up to 20 years	8-10 years	Up to 20 years
Temperature range	0°C - 60°C	-10°C - 60°C	0°C - 60°C	-20°C - 150°C
Capacity	<65 Ah	<20 Ah	~150 mAh	1 Ah
Geometry	35 cm x 10 cm	35 cm x 10 cm	10 cm x 5 cm	6 cm x 5 cm
Use case example	Stationary energy storage	Starter battery	Wearables	Autoclavable medical devices

On-site training for battery technologists

Hands-on training on pilot production lines

- Electrode slurry mixing
- Electrode coating (2 coating lines)
- Calendaring
- Cell assembly (pouch and prismatic cells)
- Formation
- Analytics

Up to 900 persons per year


Battery research at Fraunhofer ISIT: Focus topics

Innovative manufacturing technologies

Dry coating

Sustainable manufacture of battery electrodes

- Dry coating of electrodes
- Electrode design and up-scaling
- Polymer-ceramic all solid- state battery

Accelerated **battery cell development**

Rapid prototyping

Fast battery cell development

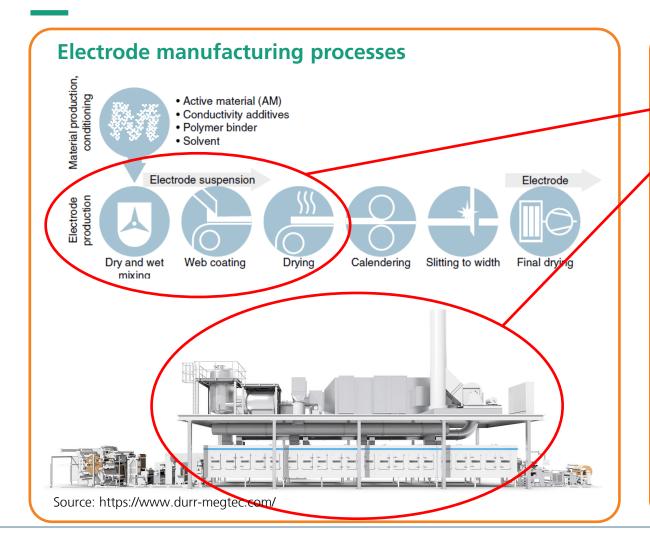
- Time for development: 3 to 8 weeks
- Pouch cells in multiple form factors
- Cell adaptation to customer

Separator technology

Simplification of the process chain

- High-Power Separator based on ISIT technology
- Ultra high-power batteries (60C)
- Direct coating of separators on electrodes

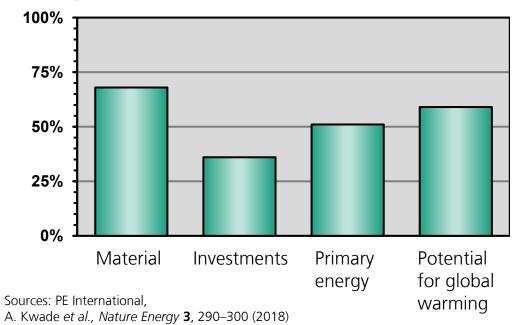
High power Battery cell


Ultra-high-performance batteries with ext. lifetime

- High-rate capability
- Cost efficiently
- Customized in shape

Dry Coating: Cost Reduction Potential through New Ideas

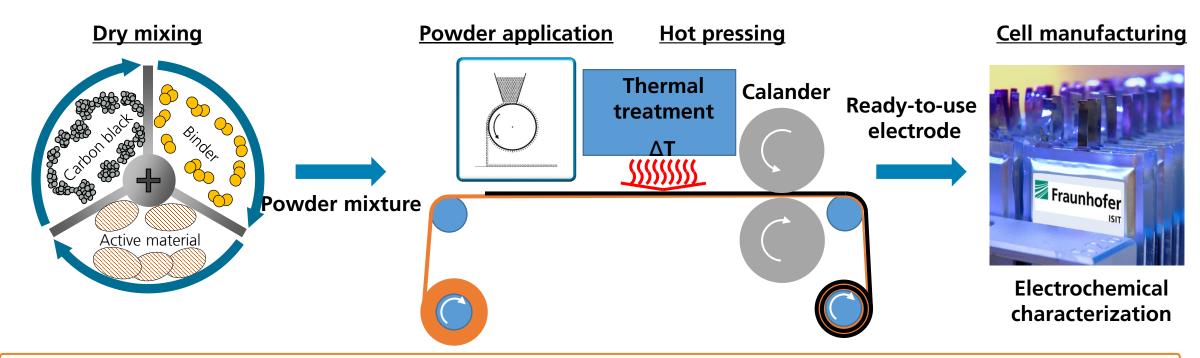
Life-Cycle Assessment, EU-Project


30 11 2022

Novel dry powder coating technology implies

- ▶ No solvent needed significant material savings
- No drying needed significant energy savings
- Significantly smaller footprint reduced CAPEX

Saving potentials:



© Fraunhofer ISIT Offen

Dry coating: Process for Electrodes

Environmentally friendly, cost efficient, space and energy saving

Process chain

"The technological approach of "dry coating" allows the energy-intensive drying step to be eliminated for significant energy and cost savings. "

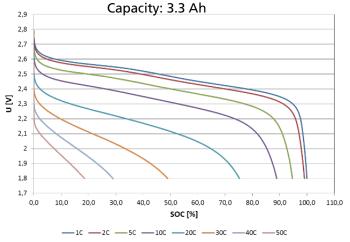
F. Degen and O. Krätzig, "Future in Battery Production: An Extensive Benchmarking of Novel Production Technologies as Guidance for Decision Making in Engineering," in IEEE Transactions on Engineering Management, doi: 10.1109/TEM.2022.3144882.

Cell development - High Power Cells

LTO based

Lithium-Polymer Accumulators

USPs


Flexible format, scalable, resilient, durable, safe, wide temperature range

- Know-how
 - Conception, development and optimization of individual samples up to small series
- Value chain from electrode foil production to the battery module
- Measurement technology

Charging/discharging processes, electrical characterization (impedance measurement, etc.), cycle tests, load tests, temperature change and humidity tests, post-mortem analyses

High-performance single cell Average voltage: 2.5 V

Discharge process at different C-rates

Application: 50C high- performance storage system

- Very high C-rate for fastest charging and discharging up to 50 C
- High intrinsic safety through LTO anode material
- Extended temperature range (-10 °C ... 60°C, also for charging)
- Very high cycle stability
- Maximum power of the 2.5 V / 3.3
 Ah single cell of 412W
- High-performance battery storage system with 1 kWh/300 V and nominal/peak power of 30/50 kW consisting of 11 modules with 12 cells per module

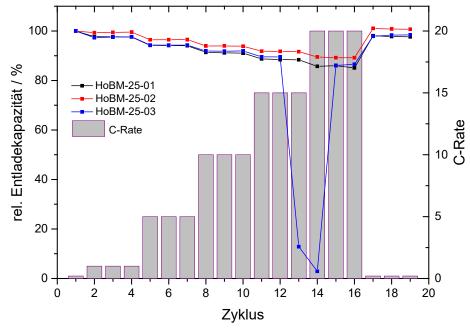
Cell development - High Power Cells

Graphite based

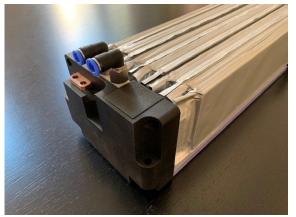
Results:

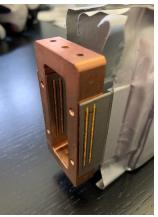
- High discharge current of more than 20 C
- Energy density of at least 150 Wh/kg
- Space-saving design with optimal heat dissipation
 - Long lifetime
 - High performance

Technical parameters of the cells

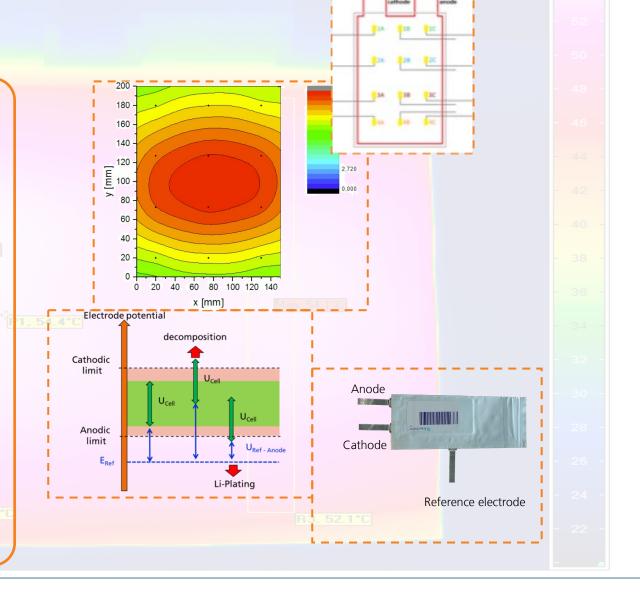

Cell voltage: 3,7 V

Energy density: >150 Wh/kg / > 400 Wh/l


■ Peak power: > 3.750 W/kg (25 C) 10s


■ DT @ cell: < 2 K @ 10 C (DC)

Cycle stability: > 300 cycles @ 100% DOD



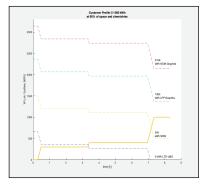
Cell Testing

Advanced Test Procedures

- Instrumentation with third electrode and in-situ measurement
- Instrumentation fibre optics and in-situ measurement
- Instrumentation thermal sensors and in-situ measurement
- Instrumentation strain gauges and in-situ measurement
- Abuse tests with observation of electrode parameters during failure
- Volume expansion measurement in static condition as well as under cycles or C-rates
- Thermography in standard operation or under extreme stress of the cells
- Evaluation of all critical cell parameters

Battery Analytics & System Integration

Development and simulation of intelligent module and system design


Smart Cells

Reference electrodes

- Light sensors
- Pressure & temperature sensors

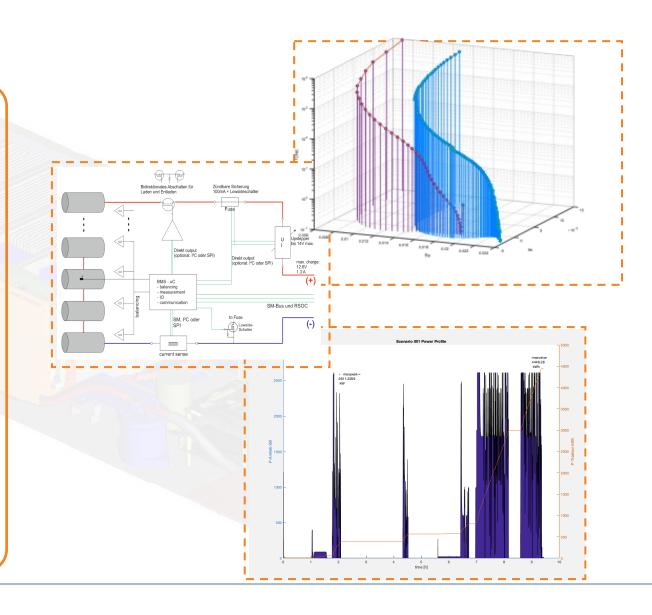
Profiling & optimisation

- Analyzing driving profiles
- Selecting cell technology
- Estimating characteristic values

Algorithmic & Al-design

- Building of AI algorithms
- Creation of HW / SW
- Simulation of behavior

System and BMS in application



- System simulation
- Installation space optimization
- Implementation in application

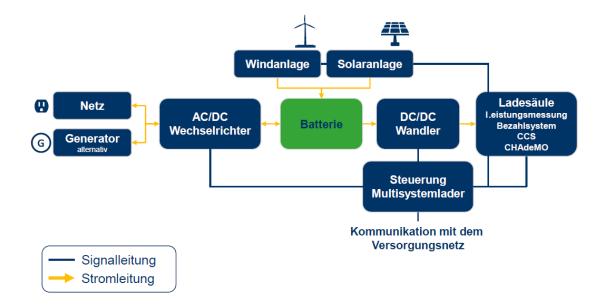
System Level

Advanced considerations and tools

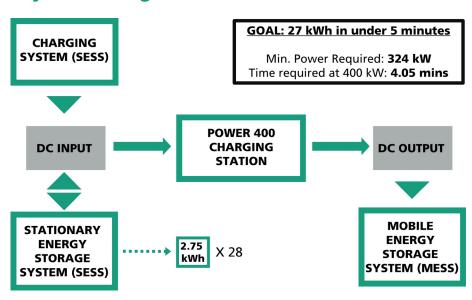
- Testing of novel algorithms in existing systems to improve SOC/SOH calculation
- Test of the system in the user profile and derivation of statistical properties - lifetime estimation for the customer
- Integration of machine-learning algorithms to be able to react to changes in the profiles regarding 2nd life requirements
- Comparison of customer profiles (such as ancillary services or driving cycles) against different geometries or cell chemistries
- Computational design and test whether the selected configurations meet all criteria of the requirement.
- Lifetime estimation regarding 1st and 2nd use

Power 400

Project Idea and System Design


◯ EU.SH 💥 🤻

Landesprogramm Wirtschaft: Gefördert durch die Europäische Union - Europäischer Fonds für regionale Entwicklung (EFRE), den Bund und das Land Schleswig-Holstein


Wir fördern Wirtschaft

Idea:

- Charging station with buffer storage
- Fast charging independent of infrastructure
- Relief and stabilization of the grids

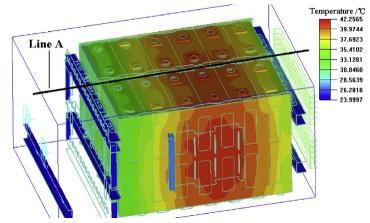
System design:

Charging system requirements and specification

	DC Input	DC Output
Voltage range	540-890 V	0-1283 V
Max. current	1600 A	0-794 A

Power 400 - Prospectives

Bundling the Competences of FAB-SH and CAU@ISIT

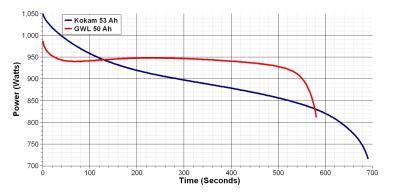

FAB-SH:

- Buffer storage
- Design and development
- Cell production and module construction

ISIT@CAU:

- System design
- Charging system
- Grid integration
- Analysis

16



Wir fördern Wirtschaft

Landesprogramm Wirtschaft: Gefördert durch die Europäische Union - Europäischer Fonds für regionale Entwicklung (EFRE), den Bund und das Land Schleswig-Holstein

What else we can do for you?

Dry Coating	High-Power Cell	High Temperature Cell	Smart-Cell
Solvent free	18C discharge/charge rate	Up to 150°C operation temperature	Sensor integration in cells
Space saving	160 Wh/kg	Autoclavable	Safety monitoring
Energy saving	Graphite technology	High intrinsic safety	Ageing prediction
ISIT-Separator	Ultra-High-Power Cell	High Pressure Cell	Cell Test
High flexibility	60C discharge/charge rate	600 bar pressure resistant	>400 measurement channels
Low resistance	190 Wh/kg	Flexible geometry	Cycle stability, C-Rate capability
Direct coating on electrodes	LTO technology	Good low temperature performance	CV, HPLC, Impedance
Solid State Batt. (ASSB)	Si-High-Energy Cell	Flexible Cell	Module Test
Polymer-Ceramic Hybrid	100% Si Anode	Resistant to alternating bending	5 Channels
Dry coated	>300 Wh/kg	High intrinsic safety	Up to 60 V, 150 A

Thank you for your attention!

Dipl. Chem. Jannes Ophey
Head of Group "Manufacturing Technology"
Business Unit "Battery Systems FAB-SH"
Tel. +49 4821 17-4332
jannes.ophey@isit.fraunhofer.de

Fraunhofer ISIT
Fraunhoferstrasse 1
25524 Itzehoe | Germany
www.isit.fraunhofer.de

